In order to solve complex medical problems, a talented group of young researchers at Einstein and Montefiore is harnessing the power of something called a learning health system (LHS). Combining research, data, and a culture dedicated to continuous improvement, the LHS educates physicians and develops ways to more efficiently care for people. Not only do patients benefit from state-of-the-art care, but their experiences are helping drive the future of medical research.
“In the simplest terms, an LHS is a system where research and data collection inform practice and, in turn, practice influences research,” says Michael Rinke, M.D., Ph.D., associate professor of pediatrics at Einstein and co-director of the Health Research Implementation Core at the Harold and Muriel Block Institute for Clinical and Translational Research at Einstein and Montefiore. “With an LHS, you’re constantly improving and innovating to achieve best practices, which you incorporate into the healthcare you deliver.”
An LHS “epitomizes evidence-based medicine and is the best way to get at complex medical issues like detecting spinal metastases,” says Vijay Yanamadala, M.D., M.B.A., M.S., assistant professor of neurological surgery at Einstein and director of the Center for Surgical Optimization at Montefiore. In fact, he says, the logic behind an LHS is not unique to healthcare.
“To devise a game plan, football coaches use what they learn from trying different configurations and plays during practice,” Dr. Yanamadala says. “After game day, the team goes over the films to see what worked and didn’t work, and it then builds on its analysis of those data to develop a better strategy.”
In the simplest terms, an LHS is a system where research and data collection inform practice and, in turn, practice influences research.
— Dr. Michael Rinke
But medicine has been reluctant to let data steer it toward better healthcare. “Multiple studies show that when a new and better way to treat patients comes out, it takes about 17 years to be widely adopted,” Dr. Rinke says. “The classic example we give in quality improvement is that we’ve all tried to change something about ourselves—exercise more, for instance, or get more sleep—and it’s really challenging. Changing things in a workplace can be just as hard.”
One of the main goals of LHS research is to greatly shorten that 17-year lag time, he says. And Einstein and Montefiore are at the forefront of this approach. “We have incredible researchers who analyze data—primarily information from patients’ electronic health records—to continuously generate information aimed at solving problems,” Dr. Rinke says. “But just as important, once a new treatment or tool has been rigorously tested, we have an equally strong operations group to integrate it into our systems to make sure that all patients benefit.”
Dr. Yanamadala, in collaboration with Dr. Mirhaji, is using LHS practices to detect and treat spinal tumors. Dr. Mirhaji is creating a machine-learning algorithm to do what no human can: analyze millions of pieces of data—images, lab results, doctors’ notes, and more—to uncover the patterns indicating that a patient’s cancer may have spread.
“Physicians are only human, so they can factor only about seven variables—things like blood pressure, pulse rate, and body temperature—into their decision-making process,” Dr. Mirhaji says. “But the algorithm can look at hundreds of different variables and draw conclusions regarding a patient’s condition from that information.”
Dr. Yanamadala, for his part, is interviewing patients and their providers and collecting other patient-care data to uncover roadblocks that cause delays. The goal is to create a center staffed by a variety of specialists, including neurosurgeons, radiation oncologists, and physiatrists. The new center will enable patients to receive prompt, appropriate treatment in one place for spinal metastases.
“This way of operating—constantly collecting and analyzing data and using what you learn to continually improve—is where medicine is headed,” Dr. Yanamadala says. “And Einstein and Montefiore are at the cutting edge, which is what drew me here.”
Dr. Yanamadala is one of four scholars who’ve recently joined the new Einstein and Montefiore LHS center—known as the Excellence in Promoting LHS Operations and Research at Einstein and Montefiore, or EXPLORE. It was established in November 2018 with a $3.3 million federal grant—one of only 11 LHS Centers of Excellence in the nation and the only one in the state of New York.
“This is the first federal grant to train investigators in the LHS model,” says Dr. Rinke, who is also a co–principal investigator for the EXPLORE grant. Traditionally, promising physician-scientists such as Dr. Yanamadala approach medical institutions with research questions they’d like to pursue. EXPLORE turns that model on its head, Dr. Rinke says. It first identifies high-priority questions—such as how to detect bone metastases early—and then seeks applicants with the experience and the intense curiosity to answer those questions.
“A major advantage to that approach is that we can have all the resources in place for the scholars to hit the ground running,” says Paul Marantz, M.D., M.P.H., associate dean for clinical research education and a co-principal investigator on the grant. He notes that each scholar will have both clinical and health-systems mentors, plus access to expertise in sophisticated data processing.
The abundance of medical data now stored digitally “amounts to a treasure trove for an LHS center like EXPLORE,” Dr. Marantz says. “At the heart of the LHS model is the notion that we can use all those data—not only to figure out the right things to do clinically, but to influence complex health systems to adapt and be willing to implement new evidence.” To that end, he says, EXPLORE brings together professionals from all parts of the healthcare system—from physicians and nurses to data scientists and pharmacists. “Their collaboration is key in a learning health system,” he emphasizes.
“There’s great value in having people from different disciplines and different levels of the health system leadership sitting around the same table,” says Chinazo Cunningham, M.D., M.S., a co–principal investigator for the EXPLORE grant. “That takes discussions to another level where we’re able to see beyond our respective roles and consider how best to make changes in a complex system. And by publishing what we’ve learned about improving clinical practice, we’re helping patients at other hospitals and health systems benefit as well.”
The EXPLORE program “reflects the changing culture of medical research,” says Shalom Kalnicki, M.D., chair of radiation oncology at Einstein and Montefiore and one of Dr. Yanamadala’s mentors. “Research done at wet-lab benches using test tubes and animal models is vital,” he says. “But research increasingly is being done by computer modeling, with results that can be fed into an LHS. I feel that these young investigators we’re training and mentoring in collaborative research represent the future of medicine.”
This way of operating— constantly collecting and analyzing data and using what you learn to continually improve—is where medicine is headed.
— Dr. Vijay Yanamadala
Being able to predict which patients are at risk and to prompt doctors to quickly take preventive action can save lives.
— Dr. Kaitlyn Philips
Using Electronic Health Records to Spot Sepsis
Sepsis—the body’s overwhelming and potentially fatal response to infection—is the most expensive inpatient problem in American hospitals, costing an estimated $27 billion yearly. Kaitlyn Philips, D.O., M.S., assistant professor of pediatrics at Einstein and an attending physician at the Children’s Hospital at Montefiore (CHAM), is pursuing an EXPLORE project aimed at improving the care of sepsis patients.
Dr. Philips says that her experience treating sepsis in children, who often display more-subtle symptoms than adults, helps in her effort to recognize sepsis at an early, treatable stage. “I’m able to act as a liaison between the pediatric and adult worlds in sepsis research,” she says.
One-third of patients who die in hospitals have sepsis. But according to Dr. Philips, the challenge is diagnosing sepsis early enough to save lives—before the heart weakens and organs start shutting down. For her project, Dr. Philips is sifting through the electronic health records of patients whose organs have failed due to sepsis.
Sepsis can progress rapidly, and it’s not known why one patient develops it and another, similar patient doesn’t. “Once we can identify early signs and symptoms that these patients have in common we can modify electronic alerts and make them more usable to help physicians identify patients at high risk for sepsis and treat them,” Dr. Philips says. “Being able to predict which patients are at risk and to prompt doctors to quickly take preventive action can save lives.”
Montefiore already has social-needs data on over 50,000 patients—an impressive amount of information.
— Dr. Kevin Fiori
It’s exciting to pull together a multidisciplinary team to work on a project like this.
— Dr. Justina Groeger
Using Decision Tools to Prescribe Pain Medicine
Opioid pain medications can effectively relieve pain after surgery. But opioids are often started without a clear plan for transitioning patients to safer forms of pain relief. As a result, as many as 1.6 million Americans who have surgery each year wind up taking opioids over the long term, increasing the risk of serious side effects such as opioid-use disorder and overdose.
For her EXPLORE project, Justina Groeger, M.D., assistant professor of medicine at Einstein and an internist at Montefiore, is trying to figure out how to prescribe the right amount of opioids to surgical patients.
“The severity of pain is highly dependent on the individual patient,” Dr. Groeger says, “so a one-size-fits-all approach doesn’t work when prescribing pain medication.” She is researching how to tailor opioid prescribing, starting with the amount of pain medication a patient was taking before leaving the hospital and tapering the dose over several days at home.
Using the LHS approach, Dr. Groeger is working with a team of clinicians, performance-improvement experts, and researchers to develop a protocol, test it in small groups of patients, and refine it based on feedback. “It’s exciting to pull together a multidisciplinary team to work on a project like this,” Dr. Groeger says.
Initially, Dr. Groeger is studying people who’ve had knee replacements. But once the prescribing protocol is solid, she plans to integrate it into Montefiore’s electronic-record system. “Ideally, the provider who is discharging a patient will be prompted with a recommended dose and tapering schedule for opioid pain medication as well as customized instructions for patients,” she says.
Dr. Groeger’s project also involves developing a clinical decision tool to help physicians tailor their pain medication prescribing to patients’ individual needs. Ultimately, she envisions using the clinical decision tool for other purposes as well, such as customizing doses of insulin for patients with diabetes.
“Having an LHS means recognizing that every patient’s experience is an opportunity to learn as much as possible to help the next person,” Dr. Rinke says. “As data from electronic records accumulate and our ability to analyze those data improves, we’ll be relying on a pipeline of rigorously trained researchers to harness data and take us into the future. Thanks to the EXPLORE grant, we’re fortunate to have this crack squad of researchers focused on finding the best possible healthcare strategies and delivering them to patients.”